On perfect neighborhood sets in graphs

نویسندگان

  • Gerd Fricke
  • Teresa W. Haynes
  • Sandra Mitchell Hedetniemi
  • Stephen T. Hedetniemi
  • Michael A. Henning
چکیده

Let G = (V,E) be a graph and let S & V. The set S is a dominating set of G is every vertex of V-S is adjacent to a vertex of S. A vertex v of G is called S-perfect if \N[t~]nsi = 1 where N[v] denotes the closed neighborhood of v. The set S is defined to be a perfect neighborhood set of G if every vertex of G is S-perfect or adjacent with an S-perfect vertex. We prove that for all graphs G, O(G) = r(G) where T(G) is the maximum cardinality of a minimal dominating set of G and where O(G) is the maximum cardinality among all perfect neighborhood sets of G. @ 1999 Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal non-neighborhood-perfect graphs

Neighborhood-perfect graphs form a subclass of the perfect graphs if the Strong Perfect Graph Conjecture of C. Berge is true. However, they are still not shown to be perfect. Here we propose the characterization of neighborhood-perfect graphs by studying minimal non-neighborhood-perfect graphs (MNNPG). After presenting some properties of MNNPGs, w e show that the only MNNPGs with neighborhood i...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Locally Identifying Coloring of Graphs

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let χlid(G) be the minimum number of colors used in a locally identifying vertex-coloring of G. In ...

متن کامل

From Irredundance to Annihilation: a Brief Overview of Some Domination Parameters of Graphs

During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-...

متن کامل

Neighborhood covering and independence on two superclasses of cographs

Given a simple graph G, a set C ⊆ V (G) is a neighborhood cover set if every edge and vertex of G belongs to some G[v] with v ∈ C, where G[v] denotes the subgraph of G induced by the closed neighborhood of the vertex v. Two elements of E(G)∪V (G) are neighborhood-independent if there is no vertex v ∈ V (G) such that both elements are in G[v]. A set S ⊆ V (G) ∪ E(G) is neighborhood-independent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 199  شماره 

صفحات  -

تاریخ انتشار 1999